Что производит станкостроение. Краткий экскурс развития станкостроения. Среди российских предприятий станкостроения

Стремясь вырвать страну из вековой отсталости, в том числе в области техники и производительности труда, Петр 1 выписывал из-за границы иностранных ученых и мастеров, посылал туда учится русских людей, зачастую незнатного звания. На металлообрабатывающих предприятиях центра страны и на Урале они создавали и вводили в строй новые технические средства, основали более современные технологии производства. Усиливалась деятельность мастеров-изобретателей «махин» для обработки металла давлением и резанием.

Сам Петр владел в совершенстве различными ремеслами, однако наиболее внимание уделял токарному искусству и немало времени проводил в своей личной «токарне».

Токарное дело в XVII и XVIII веках понимали весьма широко. Оно включало в себя, помимо точения еще и гравирование, фрезерование, строгание. Мастера токарного дела того времени являлись, по сути дела, квалифицированными инженерами, хорошо знакомыми с основным механики, математики и других наук. Многие из них прошли через основную в 1701 году в Москве навигационную школу. В 1704 г. в это учебное заведение держал экзамен молодой московской простолюдин Андрей Нартов, которому было суждено обессмертить свое имя.

Около двадцати пяти лет посвятил Андрей Нартов усовершенствованию и изобретению станков. Однако прославил себя наш соотечественник созданием механизированного суппорта к токарным станку.

Изобретение суппорта означало в полном смысле слова переворот в металлообработке. 1712 год - эта дата по своему не менее весома в истории человечества, чем год создания парового котла. Именно в 1712 году Андрей Константинович Нартов, руководитель токарной мастерской и преподаватель навигаторской школы, продемонстрировал разработанную им конструкцию токарно-копировального станка, действующего практически без участия человеческих рук: в этом станке появился новый конструктивный элемент, названный изобретателем «держалкой».

Что представлял собой станок?

Двухъярусная станина - «верстак» - была искусно выполнена А.К. Нартовым из мореного дуба (он своим руками изготовил все до одной детали), точеные ножи и верхние стойки. Приводился станок в действие фигурной рукояткой, вращение от которой передавалось на шестерню промежуточного вала.

Вал мог получать вращательное движение от ременного привода. Для этого был предусмотрен дополнительный шкив. На шпиндель станка сначала устанавливали образец-копир, затем - заготовку изделия.

Что же представлял собой суппорт Нартов А.?

Это был перемещаемый вдоль изделия и жестко закрепляемый в случае необходимости блок, в котором винтами зажимался резец. В ходе работы станка приковало внимание к Нартову.По распоряжению самого Петра! мастер был переведен на работу в личную царскую «токарю» в - Петербург. Ему были созданы условия для исследовательской и изобретательской работы. Талант простого русского человека был замечен и поддержан. На следующий год после изобретения суппорта Нартов продемонстрировал еще одно свое детище - новую модель копировального, или его называли в Петровскую эпоху гильоширного станка.

Приводился в действие он от шкива, размещенного вне станка. На шпиндель станка насаживался комплект фасонных копиров, что позволяло, работающему на этом станке, наносить на изделие несложные узоры.

Следующей большой работой изобретателя было создание комбинированного токарно-копировального станка. К разработке его конструкции мастер приступил в 1718 г. Когда чертежи были готовы, и Нартов приготовился к практическому изготовлению деталей и узлов, труд над станком был прерван. Андрей Константиновича послали за границу получить сведения о «гнутии дуба, употреблявшегося в корабельное строительство», а также познакомиться с состоянием металлообработки. Два года продолжалось путешествие Нартов. Перед отъездом Нартову было поручено заказать изготовление этого станка в Англии. Вернувшись в Россию, Нартов написал докладную записку Петру1, в которой перечислил все выполненные им за границей работы и вместе с этим сообщил, что заказать токарно-копировальный станок в Англии не удалось -- ни один из английских мастеров не взялся изготовить для него детали. Впоследствии Нартов сам с помощниками воплотил в металл и дерево свое изобретение. На это потребовалось изобретателю одиннадцать лет. Станок этот сохранился до сих пор и поражает совершенством своей кинематической схемы. Продольные перемещения суппорта в станке впервые совершенствовались автоматически. Ходовой винт его, сам по себе явившийся крупной технической находкой, имел различный шаг для копировальной и рабочей головок. Кстати, винт был нарезан Нартовым на специально созданном им винторезном станке. Заметим, что английский изобретатель моделей иного десятков лет спустя все еще нарезал аналогичные винты для своих станков вручную - и резьба при большой трудоемкости ее выполнения таким образом получалась все таки грубой и неточной.

Двадцатые годы XVIII века были более счастливыми в жизни и творчестве Нартова. Он изобрел станок для изготовления рельефов на изделиях -медалях, монетах, орденах, станок для нарезания зубьев у мелких шестерен, применяемых в часовом производстве.

После смерти Петра Нартов жил и трудился еще 30 лет. За это время он создал целый парк новых станков. Среди них сверлильный станок для глухих пушечных отливок, станок для нарезания продольных узоров на пушках, станок для обточки цапф, а также ряд новых режущих и измерительных инструментов, приборов.

Конструктивные основные идеи Нартова были воплощены при его жизни только в нескольких станках, настоящее же развитие получили в XIX веке, реализованы в российском станкостроении. Некоторые из этих идей не потеряли своего значения и сегодня.

Многие специальные станки появились и были усовершенствованы на Тульском оружейном заводе, основанном Никитой Антуфьевым (бывшим кузнецом), вошедшим в историю по фамилией Демидова. Опытные мастера этого завода Яков Батищев и Марк Сидоров создали несколько машин для оружейного производства. Все эти машины приводились в действие от водяного колеса. Так, для первичного чернового сверления заготовок ружейных стволов Сидоров первым построил машину, снабженную сверлами- штангами. Стволы в процессе обработки охлаждались водой.

Продолживший дело М. Сидорова, Я. Батищев создал обтиральную машину для чистки стволов. Этот мастер первым в русском станкостроении соединил в единую цепь с общим приводом сверлильный, обтиральный и шустовальный станки. Механизация же процессов шустования и обтирания значительно облегчила тяжелые работы. Станок Батищева имел 12 специальных напильников вогнутой формы, механически прижимавшихся к стволам.

Изобретения Батищева намного опередили свое время. Но они подобно изобретениям Нартова долго лежали под спудом, не находя широкого применения в родной стране. После смерти Петра 1 интерес власти к развитию отечественной металлообработки пропал. Созданные на Тульском и других заводах машины постепенно приходили в негодность, о них перестали заботиться: забывались технические достижения начала века.

Забывались ли? Нет, они жили в памяти хоть и немногих, но верных приверженцев отечественного станкостроения. В 1785 году тульский оружейник Алексей Сурнин помощью инструментальщика Латова изготовил машину для точения «замочных лодышек».

В начале XIX века на небосклоне отечественной технической мысли ярко загорается звезда еще одного изобретателя и станочника- Павла Дмитриевича Захавы. На том же Тульском заводе он, начиная с 1810 года, руководил конструированием и производством новых станков, в основном токарных. Назовем наиболее удачные конструкции изобретателя: станок для вторичного и окончательного сверления ружейных каналов, станок для нарезания резьбы, станок для сверления трубки штыка, протяжной станок, полировочный станок.

Одна из этих новинок, а именно станок для окончательного сверления ружейных стволов впервые не имел деревянных частей Станина была цельнометаллической, в машине применен реверс.

В изобретении токарных станков Захава добился особенно больших успехов. В них, как и машинах Нартова, был использован механический суппорт, скользящий люнет (подвижная опора). Резец на станке Захава стал обрабатывать как цилиндрические, так и конические поверхности.

Для своевременной остановки хода резца станок был снабжен и снова впервые! Автоматическим отключающим механизмом.

При непосредственном участии Захавы на Тульском заводе было изготовлено свыше ста металлорежущих станков, которые в значительной части были отправлены и другие отечественные предприятия.

Одновременно с Захава в России работали еще два изобретателя станков Ефим Алексеевич и его сын Мирон Ефимович Черепановы. В тридцатые годы прошлого века отец и сын создали в Нижнем Тагиле ряд горнорудных машин и паровых станков сверлильных, винторезных, «гвоздарных» и токарных.

В канун Отечественной войны: 1812 г. появился в России первый штамповочный молот - машина для обработки металла давлением. С этой же поры начинается хоть и медленный, но неуклонный рост отечественной металлообрабатывающей и станкостроительной промышленности. В середине прошлого века в России уже насчитывалось 25 машиностроительных заводов, а в 1861 г. их было более ста.

Однако количественный рост предприятий не означал качественных сдвигов в станочном деле. Токарный станок по прежнему оставался главным среди машин орудий. Технических прогресс, шагающий по основным капиталистическим странам, словно обходил стороной Россию, обрекая ее на второразрядную роль в мировой экономике.

В 1912 г. общая потребность страны в станках была удовлетворена внутренним производством только на 26%.

Доля собственного станкостроения в пополнении станочного парка неуклонно снижалась

Подлинными хозяевами на станочном рынке России были Германия и другие западные страны.

До 2018 года немецко-японский станкостроительный концерн DMG Mori обязался запустить в Ульяновской области производство, которое бы выпускало 1200 токарно-фрезерных станков в год. Это треть всех металлорежущих машин, которые производятся сегодня в нашей стране. Для осуществления своих планов DMG Mori придется инвестировать более 750 млн. рублей в . Однако цифры не пугают крупного игрока, так как реальность прибыли в ближайшем будущем очевидна.

История развития станкостроения в России

Развитие станкостроения в России началось в 18 веке. В 1738 году русский механик Нартов построил первый в мире металлорежущий аппарат с механическим суппортом и сменными зубчатыми колесами. В то время отрасль служила, в основном, для конструирования военной техники и развивалась очень медленно.

Первым предприятием, которое производило металлообрабатывающие машины, стал завод Берда в Санкт-Петербурге. Он открылся в 1790. Затем станки стал выпускать Тульский оружейный завод и еще несколько предприятий по стране. До революции развитие станкостроения было достаточно слабым. Потребности отечественной экономики были покрыты только на 20% за счет местной продукции, большая же часть машин поставлялась из-за рубежа.

Советский период - время бурного развития станкостроения. СССР конкурировал с США по объему производства агрегатов и экспортировал металлообрабатывающие агрегаты в разные страны мира. Однако в 90-е годы и в начале нынешнего столетия наблюдался критический спад в изготовлении продукции. На 2009 год в РФ работала только четвертая часть всех бывших советских станкостроительных предприятий. Если в 1991 выпускалось 70 тыс. станков в год, то в 2012 - только 3,5 тыс. В 2011 наша страна занимала аж 21-е место в мире по выпуску металлообрабатывающих агрегатов.

При этом мировая отрасль вырвалась далеко вперед, начали выпускаться машины со сложным программным обеспечением , внедрялись модульные схемы в производство. Отечественные же станкостроительные предприятия занимались на 80% ремонтом и модернизацией старого оборудования.

Время нового развития станкостроения в России

В 2011 году государство поддержало данную сферу внедрением новой подпрограммы по развитию станкостроения и инструментальной промышленности. Проект рассчитан на реализацию в течение 20 лет. В отрасль потекли дотации и инвестиции, что сказалось на жизнедеятельности предприятий. Если в 2010 работали - и даже не в полную силу - только 40 производств, то на 2015 их стало уже около сотни. Доля российской продукции на внутреннем рынке выросла до 22%, а объем ее продаж составил 98,2 млн руб. Отечественное оборудование стало снова экспортироваться за рубеж. Согласно данным 2016 г., на продукцию сегмента приходится 7% всего экспорта страны.

Правительство инициировало создание станкостроительных кластеров в разных регионах РФ: в Липецкой, Ульяновской, Ростовской областях, а также на Урале в Татарстане и в Санкт-Петербурге. Локализация еще больше стимулировала развитие станкостроения в России и привлекла западные инвестиции.

Военная промышленность и производство станков: навеки вместе

В 2017 Дмитрий Медведев заявил, что для военно-промышленного комплекса развитие станкостроения является критически важным. Военная промышленность остро нуждается в высокотехнологичном, современном оснащении, а отечественные агрегаты не всегда ее требованиям отвечают. Именно поэтому приходится запускать импортные машины, как, например, недавно это сделали на Балтийском заводе, где ввели в эксплуатацию итальянское оборудование стоимостью 6 млн евро. В то же время военно-промышленный комплекс готов делать заказы у российских производителей, внося свою внушительную долю в развитие станкостроения.

КЛАССИФИКАЦИЯ И СИСТЕМА ОБОЗНАЧЕНИЯ СТАНКОВ 3

ШЛИФОВАНИЕ 6

ИНСТРУМЕНТ, ПРИМЕНЯЕМЫЙ ПРИ ШЛИФОВАНИИ 6

КОМПОНОВКА МЕХАНИЧЕСКИХ ЦЕХОВ 9

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 15

КЛАССИФИКАЦИЯ И СИСТЕМА ОБОЗНАЧЕНИЯ СТАНКОВ

Металлорежущие станки в зависимости от вида обработки делят на девять групп (табл 1), а каждую группу - на десять типов (под­групп), характеризующих назначение станков, их компоновку, степень автоматизации или вид применяемого инструмента. Группа 4 предназначена для электроэрозионных, уль­тразвуковых и других станков.

Обозначение модели станка состоит из со­четания трех или четырех цифр и букв. Первая цифра означает номер группы, вторая – номер подгруппы (тип станка), а последние одна или две цифры – наиболее характерные технологи­ческие параметры станка. Например, 1Е116 означает токарно-револьверный одношпиндельный автомат с наибольшим диаметром обрабатываемого прутка 16 мм; 2Н125 озна­чает вертикально-сверлильный станок с наи­большим условным диаметром сверления 25 мм. Буква, стоящая после первой цифры, указывает на различное исполнение и модер­низацию основной базовой модели станка. Буква в конце цифровой части означает моди­фикацию базовой модели, класс точно­сти станка или его особенности. Классы точности станков обозначают: Н – нормаль­ной; П – повышенной; В – высокой, А – осо­бо высокой точности и С – особо точные станки. Принята следующая индексация моде­лей станков с программным управлением: Ц – с цикловым управлением; Ф1 – с цифро­вой индексацией положения, а также с предварительным набором координат; Ф2 – с позиционной системой ЧПУ, ФЗ – с контурной системой ЧПУ; Ф4 – с комби­нированной системой ЧПУ. Например, 16Д20П – токарно-винторезный станок повы­шенной точности; 6Р13К-1 – вертикально-фре­зерный консольный станок с копировальным устройством; 1Г340ПЦ – токарно-револьвер­ный станок с горизонтальной головкой, повышенной точности, с цикловым про­граммным управлением; 2455АФ1 – коорди-натно-расточный двухстоечный станок особо высокой точности с предварительным набо­ром координат и цифровой индикацией; 2Р135Ф2 – вертикально-сверлильный станок с револьверной головкой, крестовым столом и с позиционной системой числового про­граммного управления; 16К20ФЗ – токарный станок с контурной системой числового йро» граммного управления; 2202ВМФ4 – многоце­левой (сверлильно-фрезерно-расточный) гори­зонтальный станок высокой точности с ин­струментальным магазином и с комбиниро­ванной системой ЧПУ (буква М означает, что станок имеет магазин с инструментами).

Станки подразделяют на широкоунивер­сальные, универсальные (общего назначения), специализированные и специальные.

Специальные и специализированные станки обозначают буквенным индексом (из одной или двух букв), присвоенным каждому заводу, с номером модели станка. Например, мод. МШ–245 – рейкошлифовальный полуавтомат повышенной точности Московского завода шлифовальных станков.

Таблица 1 – Классификация металлорежущих станков

Типы станков

Токарные

Автоматы и полуавтоматы

Токарноревольверные

Токарноревольверные автоматы

Карусельные

Токарные и лоботокарные

Многорезцовые и копировальные

Специализированные

Разные токарные

специализированные

одношпиндельные

многошпиндельные

Сверлильные и расточные

Настольно- и вертикальносверлильные

Полуавтоматы

Координатнорасточные

Радиально- и координатносверлильные

Расточные

Отделочнорасточные

Горизонтально сверлильные

Разные сверлильные

одношпиндельные

многошпиндельные

Шлифовальные, полировальные, доводочные, заточные

Круглошлифовальные, бесцентровошлифовальные

Внутришлифовальные, координатношлифовальные

Обдирочношлифовальные

Специализированные шлифовальные

Продольношлифовальные

Заточные

Плоскошлифовальные

Притирочные, полировальные, хонинговальные, доводочные

Разные станки, работающие абразивом

Электрофизические и электрохимические

Светолучевые

Электрохимические

Электроэрозионные, ультразвуковые прошивочные

Анодномеханические отрезные

Зубо- и резьбообрабатывающие

Резьбонарезные

Зубодолбежные для цилиндрических колес

Зуборезные для конических колес

Зубофрезерные для цилиндрических колес и шлицевых валов

Для нарезания червячных колес

Для обработки торцев зубьев колес

Резьбофрезерные

Зубоотделочные, проверочные и обкатные

Зубо- и резьбошлифовальные

Разные зубо- и резьбообрабатывающие

Фрезерные

Барабанно-фрезерные

Вертикально-фрезерные консольные

Фрезерные непрерывного действия

Продольные одностоечные

Копировальные гравировальные

Вертикальнофрезерные бесконсольные

Продольные двухстоечные

Консольнофрезерные операционные

Горизонтально-фрезерные консольные

Разные фрезерные

Строгальные, долбежные, протяжные

Продольные

Поперечнострогальные

Долбежные

Протяжные горизонтальные

Протяжные вертикальные для протягивания

Разные строгальные станки

одностоечные

двухстоечные

внутреннего

наружного

Разрезные

Отрезные, работающие

Правильно-отрезные

Ленточнопильные

Отрезные с дисковой пилой

Отрезные ножовочные

абразивным кругом

гладким или насечным диском

Трубо- и муфтообрабатывающие

Пилонасекательные

Правильно- и бесцентровообдирочные

Для испытания инструментов

Делительные машины

Балансировочные

ШЛИФОВАНИЕ

Шлифование- это процесс резания материалов с помощъю абразивного материала, режущими элементами которого являются абразивные зерна. Шлифование применяется как для черновой так и для чистовой и отделочной обработки.

При шлифовании главным движением является вращение режущего инструмента с очень большой скоростью. Чаще всего в качестве шлифовального инструмента используются шлифовальные круги. Абразивные зерна расположены в круге беспорядочно и удерживаются связующим материалом. Каждое абразивное зерно работает как зуб фрезы, снимая стружку.

Процесс резания при шлифовании имеет значительное отличие по сравнению с работой лезвийного инструмента. При вращательном движении круга, в зоне его контакта с заготовкой часть зерен срезает материал в виде очень большого числа тонких стружек (до 100 000 000 в минуту). Шлифовальные круги срезают стружки на очень больших скоростях- от 30 м/c и выше (порядка 125 м/c). Процесс резания каждым зерном осуществляется почти мгновенно. Обработанная поверхность представляет собой совокупность микроследов абразивных зерен и имеет малую шероховатость. Часть зерен ориентирована так, что не может резать обрабатываемую поверхность.

Такие зерна производят работу трения по поверхности резания. Абразивные зерна могут также оказывать на заготовку существенное силовое воздействие. Происходит поверхностное пластическое деформирование материала, искажение его кристалической решетки. Деформирующая сила вызывает сдвиг одного слоя атомов относительно другого. Вследствии упругопластического деформирования материала обработанная поверхность упрочняется. Но этот эффект оказывается менее ощутимым, чем при обработке металлическим инструментом.

Шлифование применяют в основном для заготовок из закаленных сталей. С развитием малоотходных технологий доля обработки металлическим инструментом будет уменьшаться, а абразивным увеличиваться.

ИНСТРУМЕНТ, ПРИМЕНЯЕМЫЙ ПРИ ШЛИФОВАНИИ

В промышленности находят применение как естественные, так и искуственные абразивные материалы.

К естественным абразивным материалам относятся алмаз, корунд, наждак и некоторые другие. Однако ввиду того, что свойства этих материалов нестабильны, а запасы их ограничины, основное применение в промышленности получили искуственные материалы. К искуственным абразивным материалам относятся электрокорунд, корборунд, карбид бора, синтетические алмазы и сверхтвердые материалы, полученые на основе кубического нитрида бора.

Электрокорунд представляет собой кристалический оксид алюминия Al 2 O 3 . В зависимости от содержания оксида алюминия различают три типа электрокорунда: нормальный электрокорунд (Э), содержащий до 95% Al 2 O 3, электрокорунд белый (ЭБ), содержащий 95-98% Al 2 O 3 , режущая способность которого значительно выше (на 30-40%), и монокорунд, содержащий 98-99% Al 2 O 3. Чем выше содержание кристалического оксида алюминия в электрокорунде, тем выше его режущие свойства. Электрокорунд применяется для шлифования сталей, чугунов и цветных металлов. Абразивные материалы из монокорунда предназначены для получитового и чистового шлифования деталей из цементированых, закаленных и высоколегированых сталей. Карбид кремния (карборунд SiC) по сравнению с электрокорундом обладает большей твердостью, но и хрупкостью. При дроблении его зерна имеют более острые кромки, что обеспечиват повышеную производительность обработки.

Карбид кремния выпускают двух марок. Карбид кремния черный (КЧ) содержит 95-97% SiC и применяется для обработки хрупких металлических материалов, цветных металлов и неметаллов. Карбид кремния, содержащий не менее 97% SiC, имеет зеленый цвет (КЗ) и обладает более высокими свойствами. Он премущественно используется для заточки твердосплавного режущего инструмента.

Карбид бора (B 4 C) отличается черезвычайно высокой прочностью, но очень хрупок и дорог. Используется в основном в виде несвязанных образивных зерен для доводки твердосплавного режущего инструмента, притирки, резки драгоценных камней и т.д..

Синтетические алмазы (СА) получают из графита (99,7%С и 0,3% примеси) в специальных камерах при давлении около 1,3 ГПа в присутствии катализатора и температурах 1200-2400 С. В зависимости от температуры получается различная форма кристаллов и окраска от черного цвета при низких температурах до светлого при высоких.

Синтетические алмазы имеют брльшую острату режущих кромок по сравнению с естественными и потому более производительны в качестве образивного инструмента. Алмаз имеет черезвычайно высокие режущие свойства, так как он является самым твердым веществом, обладает очень высокой теплопроводностью и износостойкостью, имеет малый коэффициент трения по металлу. Однако он недостаточно теплостоек (до 800С), что позволяет его использовать в соновном для обработки хрупких материалов, цветных металлов и неметаллов.

Кубический нитрид бора (КНБ)- эльбор, боразон и другие- синтетический сверхтвердый материал близок по твердости к алмазам, но имеет теплостойкость почти вдвое более высокую (до 1500С). Высокая теплостойкость и малое химическое сродство с железом позволяет успешно использовать его для обработки высокопрочных и закаленных сталей и сплавов на основе железа.

Зерна абразивных материалов являются режущими элементами абразивных инструментов.Основным видом абразиных инструментов являются шлифовальные круги, форма и размер которых определяет ГОСТ 2424-60, который предусматривает 22 пофиля с диаметрами от 3 до 1100 мм. Среди них наиболее часто применяются следующие формы: плоские прямые (ПП), плоские с выточкой (ПВ), чашечные цилиндрические (ЧЦ) и конические (ЧК), кольца (1К), тарельчатые (2Т) и т.д..

Все большее применение находит обработка с применением образивной ленты. Этот метод применяется для черновой, чистовой и отделочной обработки и во многих случаях обеспечивает значительное повышение производительности труда.

Свойства абразивных инструментов и их работоспособность будут определяться маркой абразивного материала, а также характеристиками инструмента: зернистостью абразива, видом связки, твердостью и структурой. По размеру абразивные зерна подразделяются на 26 номеров зернистости и делятся на шлифзерна(номера зернистости 200-16), шлифпорошки (номера 12-3) и микропорошки (номера М40-М5). Номер шлифзерна и шлифпорошка соответствуют размеру зерен в сотых долях миллиметра, а номер микропорошков показывает размер зерна в микрометрах.

Выбор зернистости абразивного инструмента определяется величиной припуска на обработку, чистотой обработанной поверхности и точностью обработки. Для грубой предварительной обработки и обработки вязких материалов рекомендуется крупнозернистые инструменты, обеспечивающие высокую производительность, но низкое качество. Отделочные работы производятся мелкозернистыми кругами.

Для соединения абразивных зерен в абразивный инстрмент служит связка. Связки подразделяют на органические и неорганически. Из неорганических связок наиболее часто применяются керамические (К) и силикатные (С).

Керамическая связка состоит из огнеупорной глины,полевого шпата, талька и жидкого стекла. Благодоря высокой прочности, водостойкости и жаропрочности она является самой распрастраненной. Недостатком керамической связки является значительная хрупкость.

Силикатная связка представляет собой жидкое стекло и имеет небольшую прочность. Круги на силикатной связке предназначены для обработки деталей в тех случаях, когда не допускается повышение температуры и нельзя применять смазочно-охлаждающие жидкости.

К органичиским связкам относятся вулканитовая (В) и бакелитовая (Б). Вулканитовая связка состоит из 70% каучука и 30% серы. Абразивные инструменты на такой связке обладают большой прочностью, но имеют малую теплостойкость. Связка применяется для узких фасонных кругов. Бакелитовая связка представляет собой синтетическую смолу. Круги, изготовленные на этой связке, прочны, эластичны, допускают большие окружные скорости, но могут применяться при температуре не выше 180С.

Алмазные круги состоят из стального, алюминиевого или пластмассового кольца (основания) и закрепленного на нем алмазного слоя толщиной 1,5-5,0 мм.

Абразивный инструмент должен обладать определенной твердостью. Под твердостью понимается способность связки удерживать абразивные зерна. В соответствии с этим разработана шкала твердости, согласно которой все аразивные делятся на 16 степеней твердости. Для каждого конкретного случая обработки необходимо подбирать инструмент определенной твердости. В круге повышенной твердости при работе продолжают удерживаться притупившиеся зерна, что приводит к повышению температуры в зоне резания и прижогу обрабатываемой поверхности. Такой круг требует частичной правки для восстановления режущей способности. Слишком мягкий круг будет сильно изнашиваться, при этом будут выкрашиваться зерна, не потерявшие еще своей остроты.

При подборе круга для данных условий обработки стремятся добиться "самозатачивания". В этом случае своевременно будут выкрашиваться затупившиеся зерна и открываться новые, острые.

В любом абразивном инструменте наряду с абразивными зернами и связкой имеются поры(пустоты), способствующие его охлаждению в процессе работы. Структура абразивного инструмента определяется количественным соотношением в нем зерен, связки и пор. Имеется 13 номеров структур. Чем больше номер структуры, тем меньше в единице объема зерен и больше пор.

Характеристики образивных кругов маркируются на нерабочей поверхности круга, где приводятся их условные обозначения: вид образивного материала, зернистость, форма, размер и допустимая максимальная скорость вращения.

В процессе работы щлифовального круга абразивные зерна изнашиваются и теряют режущую способность, а круг засаливается продуктами обработки. Для восстановления режущих свойств и геометрической формы производится переодическая правка круга. Наиболее качественная правка производиться алмазными инструментами.

Более грубая правка осуществляется шарошками, оснащенными монолитными твердосплавными дисками, металлическими дисками и звездочками из износосойких сталей или правочными кругами из карбида кремния, термокорунда т.д.

КОМПОНОВКА МЕХАНИЧЕСКИХ ЦЕХОВ

Правильное размещение оборудования является основным звеном в организации безопасной работы производственного участка и цеха. При размещении оборудования необходимо соблюдать установленные минимальные разрывы между станками, между станками и отдельными элементами здания, правильно определять ширину проходов и проездов. Невыполнение правил и норм размещения оборудования приводит к загромождению помещений и травматизму.

Расположение оборудования на площади цеха или участка определяется в основном технологическим процессом и местными условиями.

При автоматизированном производстве (комплексные автоматические заводы или цеха, автоматические линии, поточное производство) оборудование размещается по ходу технологического процесса в единую цепочку с соблюдением расстояний между оборудованием и конструктивными элементами здания. На автоматических и поточных линиях большой протяженности для перехода с одной стороны линии на другую устраивают переходные мостики.

При многостаночном обслуживании оборудование располагают с учетом максимально возможного сокращения расстояний между рабочими местами. Если по условиям технологического процесса необходимо предусмотреть стеллажи или столы для заготовок и готовых изделий, то для этого отводится дополнительная площадь в соответствии с особенностями производства.

Размещение металлорежущих станков, слесарных верстаков и другого оборудования в цехах холодной обработки принимается таким, чтобы расстояние между отдельными станками или группами станков были достаточными для свободного прохода рабочих, занятых. их обслуживанием и ремонтом. Во всех случаях размещение оборудования должно обеспечивать достаточное число проходов для людей и проездов для транспорта, обеспечивающих безопасность сообщения. Ширина проходов и проездов назначается в зависимости от расположения оборудования, характера движения, способа транспортирования и размеров деталей, но при всех условиях принимается не менее 1 м. Для перевозки грузов автомашинами устраиваются проезды шириной 3,5 м. Загромождение проходов и проездов, а также рабочих мест различными предметами не разрешается.

Проходы и проезды требуется содержать в чистоте и порядке, границы их обычно отмечаются белой краской или металлическими светлыми кнопками. Ширина рабочей зоны принимается не менее 0,8 м. Расстояние между оборудованием и элементами зданий, а также размеры проходов и проездов определяются нормами технологического проектирования механических и сборочных цехов машиностроительных заводов.

В единичном и мелкосерийном производстве часто оборудование размещается по группам станков (токарные, фрезерные, расточные, шлифовальные и т. п. станки); однако необходимо стремиться к тому, чтобы расположение оборудования исключало возможность возникновения в процессе работы встречных потоков материалов, полуфабрикатов и людей. Целесообразно устраивать в пролетах между оборудованием одностороннее движение. При транспортировании различных заготовок в проходах (особенно заготовок большой длины) нельзя допускать, чтобы транспортные средства и заготовки стесняли рабочую зону или выходили за границы проезда, прохода.

Рабочее место является первичным звеном производства, оно представляет собой определенный участок производственной площади цеха, предназначенный для выполнения одним рабочим (или бригадой) порученной работы, специально приспособленный и технически оснащенный в соответствии с характером этой работы. От того, насколько правильно и рационально будет организовано рабочее место, зависит безопасность и производительность труда. Как правило, каждое рабочее место оснащено основным и вспомогательным оборудованием и соответствующим инструментом. Отсутствие на рабочем месте удобного вспомогательного оборудования или нерациональное его расположение, захламленность создают условия для возникновения травматизма.

Рис. 1. Планировка рабочего места токаря

На рис. 1 приведена типовая организация рабочего места токаря-универсала. Рабочее место включает следующие принадлежности: тумбочку станочника для двухсменной работы 1, в каждом отделении которой хранится инструмент постоянного пользования и средства по уходу за станком; приемный стол 2 для размещения на нем тары с заготовками и обработанными деталями, нижняя полка стола используется для хранения принадлежностей к станку (патронов, люнетов и др.); деревянную решетку 3 под ноги, высота которой регулируется по росту станочника. По такой схеме целесообразно организовывать рабочие места и других станочников (фрезеровщиков, зуборезчиков, шлифовщиков и т. п.).

Рис. 2. Рабочее место сварщика для сварки малогабаритных изделий

Рабочее место сварщика, изображенное на рис. 2, предназначено для сварки малогабаритных металлоконструкций в серийном и мелкосерийном производствах. Оно укомплектовано необходимой оргоснасткой с учетом рекомендаций научной организации труда. В рабочее место входит: стол сварщика 2, стул 3, стеллажи для заготовок 1 и сварных узлов 6, два перемещающихся стола 11, подставка для подающего механизма 5, аппаратный шкаф 8, инструментальная тумбочка 9, аппарат 7 для сбора флюса, поворотный консольный кран 4 и ящик для флюса 10. Такое размещение оборудования обеспечивает удобную и устойчивую позу сварщика в процессе работы, снижает затраты времени на вспомогательные операции и физическую нагрузку, улучшает условия труда. Рабочее место снабжается приемниками вытяжной вентиляции у сварочных столов.

Рис. 3. План рабочего места контролера:

1,3 и 5 - столы контролера; 2 - тележка малая; 4 - поверочная плита; 6 и 7 - столы приборные; 8 - тумбочка инструментальная; 9 - шкаф инструментальный; 10 - стол приемный рольганговой секции; 11 - каретка-оператор

На рис. 3 приведен план рабочего места контролера, организованного с учетом требований НОТ. Контрольный пункт оборудован удобной оргоснасткой и оснащен требуемыми измерительными приборами в зависимости от обслуживаемого производства. Детали, подлежащие контролю, подаются на контрольный пункт и на любое рабочее место контролера и возвращаются после контроля на специальных транспортных средствах, что исключает ручной труд. Такая организация рабочего места повышает производительность труда и уменьшает утомляемость контролера.

Мероприятия по улучшению организации рабочих мест заключаются в рационализации трудовых движений и соответствующем оборудовании рабочего места. Технологический процесс не должен допускать непроизводительных и опасных трудовых движений и тем более опасных поз рабочего.

Пространство, в котором совершается основная часть трудовых движений, сравнительно невелико. Исследования показывают, что наиболее благоприятная зона для работ сидя определяется площадкой в 0,1 м2, когда предплечье поворачивается в локтевом суставе (руки полусогнуты). Другие зоны, например работа с помощью полностью вытянутых рук, менее благоприятны и вызывают быструю утомляемость. При работе стоя благоприятная зона также невелика. Осуществляя рационализацию трудовых движений, необходимо стремиться к обеспечению коротких и наименее утомительных движений. Следует помнить: чем больше сочленений участвуют в выполнении движения, тем оно, как правило, требует большей затраты сил. Поэтому при планировке рабочих мест и, в частности, при расстановке предметов организационно-технической оснастки необходимо предусматривать применение наиболее простых движений: движения одних пальцев, движения пальцев и запястья или движения пальцев, запястья и предплечья. Следует, по возможности, устранять такие движения, которые требуют участия не только плеча, но и всего корпуса.

При размещении на рабочем месте организационно-технической оснастки (стеллажей для заготовок и готовых деталей, инструментальной тумбочки, планшетов и пр.) или вспомогательного оборудования (поворотные краны, транспортеры и пр.) следует тщательно проверить по зонам досягаемости рук, насколько рационально установлен тот или иной предмет и какие виды движений будет при этом применять рабочий. Однако решение этой задачи не должно приводить к сближению оборудования, так как в противном случае рабочее место будет стеснено, и вероятность возникновения травматизма увеличится. На практике, используя опыт новаторов производства и соответствующие нормы при расстановке вспомогательного оборудования и оснастки, следует придерживаться такого принципа: заготовки и полуфабрикаты располагать на специальных стеллажах с левой стороны от рабочего, измерительный инструмент и тару для готовых деталей - с правой. Предметы, которыми пользуется рабочий чаще, располагают ближе к станку.

Планировка рабочего места зависит от многих условий - от типа оборудования, конфигурации и габаритов деталей, применяемой технологии, организации обслуживания, но для аналогичных работ можно установить типовые рациональные планировки рабочих мест. Следует отметить, что основное и вспомогательное оборудование не должно выходить за пределы площадки, отведенной для данного рабочего места, и устройство рабочего места должно учитывать рост и другие антропометрические данные каждого рабочего.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

    Справочник технолога-машиностроителя: В 2т. /Под ред. А.Г. Косиловой, Р.К. Мещерякова. – М.: Машиностроение, 1985. – 496 с. – Т.2.

    Справочник технолога-машиностроителя. – М.: Машиностроение, 1986.

    Справочник инструментальщика / И.А. Ординарцев, Г.В. Филиппов, А.Н. Шевченко и др.; Под общ. Ред. И.А. Ординарцева. – Л.: Машиностроение. Ленингр. отд-ние, 1987.

    развито история философииКнига >> Философия

    Доход, бурно развивается автомобиле- и судостроение, станкостроение . Общество может производить все, что... страны. Вся человеческая история сводится у Ростоу к истории развития техники. Развитие передовых стран Европы и США...

Когда начинаются обсуждения перспектив или текущего состояния промышленности в России, то обязательно вопрос коснется станков и станкостроения. Приведут примеры, что все подъемы производства в СССР и России был на импортном оборудовании, а так же что сейчас уже это все износилось и промышленности практически конец.

Если сюда добавить еще западные санкции, которые в любое время запретят поставки западного оборудования, то картина совсем уж не веселая.

Однако, если подробнее рассмотреть эту отрасль, то все же позитив есть:

Объём производства станков в России:

2012 год — около 3 млрд рублей;
2013 год — около 3,5 млрд рублей;
2014 год — около 4 млрд рублей;
2015 год — около 7 млрд рублей.

Новые производства запущенные в последние годы:

1. В Трёхгорном открылся новый цех ФГУП «Приборостроительный завод» по производству станков

На площадке нового цеха в Трёхгорном будут производить несколько видов наиболее востребованных фрезерных, токарных и других видов станков для машиностроения, которые по своим технологическим характеристикам не уступают зарубежным аналогам при существенно более низкой цене. Объем инвестиций: более 1 млрд. рублей.

2. «Производственный комплекс «Ахтуба» открыл модернизированный цех производства станков с числовым программным управлением

На ОАО «Производственный комплекс «Ахтуба» состоялось торжественное открытие обновленного участка механо-сборочного производства станков с числовым программным управлением.


3. В Кургане открылся завод по изготовлению нефтепромыслового оборудования и инструмента

1 августа в Кургане открылся завод по изготовлению нефтепромыслового оборудования и инструмента. Строительство завода стало возможным благодаря совместным усилиям американской компании Varel International («Варел Интернешнл») и ее российского партнера NewTech Services («Нью Тек Сервисез») из Москвы.

В общей сложности в производство было инвестировано свыше 446 млн. рублей. На предприятии будет создано более 60 рабочих мест.


4. На ОАО «Воткинский завод» (Удмуртия) открыт новый цех по производству прогрессивного режущего инструмента. Производство является импортозамещающим.

По словам руководителя предприятия, этот цех первый и пока единственный в России. На заводе работают 525 станков с ЧПУ, из них более 100 обрабатывающих центров, в том числе 52 высокоскоростных.

Новый цех позволит полностью обеспечить потребности этого оборудования, значительно увеличить скорость резания и повысить производительность. Предполагаемый объём выпуска инструмента - 50 000 штук в год.



5. Во Владимирской области, на ОАО «Ковровский электромеханический завод» открыто сборочное производство станков японской компании TAKISAWA.

Takisawa передает Ковровскому электромеханическому заводу право на использование технической информации для сборки, продажи, проведения пуско-наладочных работ и сервисного обслуживания токарных станков с ЧПУ модели TS-4000 в России и странах СНГ.

На первом этапе объем производства может составить до 600 единиц в год, в последующем — в кооперации со станкостроительными предприятиями региона — до 1700 единиц.


6. В Ульяновске состоялась церемония посвященная выпуску первых российских станков немецко-японского концерна «ДМГ Мори Сейки».

ООО «Ульяновский станкостроительный завод» запустил сборку первых станков с числовым программным управлением SIEMENS новейшего конструктивного ряда ECOLINE. Пока сборка ведётся на арендуемых площадях. До конца 2014 года здесь соберут порядка 100 станков.

Идёт строительство завода общей стоимостью 3,2 млрд рублей. При выходе предприятия на полную мощность количество выпускаемых станков составит 1000 шт. в год. Планируется создание 200 рабочих мест.



7. В Татарстане, на территории ОЭЗ «Алабуга» состоялось открытие нового завода российской компании «Интерскол»

Завод «Интерскол-Алабуга» обеспечит до 40% импортозамещения в отрасли производства электроинструментов. Объем инвестиций в первую очередь завода составил 1,5 млрд рублей. На данный момент на заводе работает 200 человек.

В 2015 году планируется завершить строительство второй очереди завода, а к концу 2017 года ввести в строй третью очередь. Помимо электроиснтрументов здесь будут выпускать средства малой механизации производства, сварочные аппараты, компрессоры и многое другое. Всего запланировано создание 2000 рабочих мест.


8.В г. Ульяновск в индустриальном парке «Заволжье» открыт новый завод по выпуску станков.

Инвестиции немецко-японского концерна DMG MORI составили 3 млрд рублей. К 2018 году на предприятии будет создано 250 рабочих мест. Планируется, что локализация производства составит 50%.

На заводе будут выпускать три типа станков серии ecoline: станки для токарной, фрезерной обработки и фрезерные вертикально-обрабатывающие центры. производственная мощность завода -1 200 станков с возможностью увеличения производства до 1500 — 2000 станков в год.


9. Мелкосерийное производство токарных обрабатывающих центров АО «Совместное технологическое предприятие «Пермский завод металлообрабатывающих центров» (г. Пермь)

27 ноября в микрорайоне Новые Ляды состоялась презентация сборочной площадки мелкосерийного производства токарной серии металлообрабатывающего оборудования АО "Совместное технологическое предприятие "Пермский завод металлообрабатывающих центров" (АО "СТП "ПЗМЦ").

В презентации приняли участие представители 29 машиностроительных предприятий России: представители топ-менеджмента и технические специалисты предприятий Роскосмоса, Объединенной двигателестроительной корпорации, пермского машиностроительного комплекса, ОАО "Ленинградский механический завод им К.Либкнехта", Воронежского механического завода, АО Ракетно-космический центр "Прогресс" (г.Самара), ОАО "Воткинский завод", ОАО "Турбина" (г. Челябинск).

Гости посетили цех сборки ГТЭС ПАО "Протон-ПМ", где размещается мелкосерийное производство станков "Протон Т500" и "Протон Т630", а также увидели процесс обработки детали из жаропрочного сплава. Мощности данной производственной площадки позволяют выпускать до 50 станков в год.



10. Сборочное производство токарных станков Genos L Уральской машиностроительной корпорации «Пумори» (г. Екатеринбруг)

Уральская машиностроительная корпорация «Пумори» торжественно открыла в Екатеринбурге на базе компании «Пумори-инжиниринг инвест» серийное производство металлорежущих обрабатывающих центров «Окума-Пумори» (Россия-Япония)

План на 2016 г. составляет 40 станков с последующим ежегодным увеличением до 120 к 2020 г. Сейчас локализация составляет более 30 %, с 2018 она должна превысить 70 %. Полноценному сотрудничеству препятствуют экономические санкции.


11. Завод по производству металлорежущего инструмента немецкой компании Guhring (г. Нижний Новгород)

Завод компании «Гюринг» — одного из лидеров в сфере производства металлорежущего инструмента — открылся в Нижнем Новгороде 21 июля. Предприятие было построено с нуля и не имеет аналогов в России. Инвестиции в проект составили 6 млн евро. В перспективе завод позволит создать дополнительно более сотни рабочих мест.

Инвестиции в проект составили 6 млн евро.

Предприятие, аналогов которому в России пока еще нет, предназначено для выпуска инструмента специального назначения, который до этого импортировался из Германии. Также предусмотрены и мелкие стандартные линейки, осевой инструмент диаметром от 2,5 до 32 мм — сверла, фрезы и многое другое.


Перспективы

В Московской области создадут российско-китайское предприятие по выпуску высокоточных металлообрабатывающих станков. Общий объем инвестиций в 2016—2017 годах в проект по выпуску высокоточных станков и обрабатывающих центров ЧПУ превышает 110 млн евро. Предприятие начнёт работать в Ленинском районе Московской области в 2017 году.

Одним из проектов, планируемых к реализации в рамках специнвестконтракта, выступает совместное предприятие Ульяновского станкостроительного завода и немецко-японского концерна «ДМГ МОРИ СЕЙКИ»; проект предусматривает выпуск широкой линейки токарных и фрезерных обрабатывающих центров с выходом к 2017 году на проектную мощность свыше 1000 станков в год. Проектом предусмотрено создание инжинирингового центра по обучению персонала, а также разработке новых моделей металлорежущего оборудования на территории России.

Проект ООО «МТЕ Ковосвит Мас» предусматривает создание к 2018 году современного высокотехнологичного производства металлообрабатывающих станков токарной и фрезерной групп, а также многофункциональных металлообрабатывающих центров фирмы «Ковосвит» (Чехия). Площадь завода составит 33 тыс. м2.

источники

В середине XVIII столетия человеческая цивилизация вплотную приблизилась к одному из наиболее значимых этапов своего развития - периоду, который историки впоследствии назовут промышленной революцией, или Великим индустриальным переворотом. К этому времени в наиболее развитых странах мира, список которых тогда возглавляла подпитываемая многочисленными колониями Англия, начался активный процесс перехода от преимущественно аграрного устройства экономики к индустриальному. Зарождающийся промышленный капитализм обусловил потребность в повышении производительности труда, а также улучшении качества и снижении себестоимости продуктов производства.

Данным преобразованиям способствовало множество факторов: развитие торговли и формирование рынка наемного труда, становление банков и системы кредитования, эволюция права и расцвет точных наук, рост количества изобретений и технических новаций. Примитивный ручной труд и деревянные орудия труда уже не могли обеспечить потребности общества. Фабрики и мануфактуры остро нуждались в механизмах и машинах, изготовленных из металла. Именно быстро прогрессирующая металлообработка сыграла особую роль в успехе промышленной революции XVIII - XIX столетий.

Металлообработка, как основа фабричног о производства машин и механизмов

До начала индустриального переворота технологии обработки металлов путем резания, сверления и шлифовки совершенствовались крайне медленно, и эта работа носила разрозненный характер. В мануфактурный период потребность в новых инструментах подвигла владельцев фабрик к созданию вспомогательных мастерских, оборудованных элементарными сверлильными, точильными и шлифовальными станками. Часть из них приводилась в действие мускульной силой, другие - энергией воды. Но общим для всех этих приспособлений была минимальная степень механизации процесса обработки, что обуславливало низкое качество изделий.

В начале XVIII века изготовление деталей на станке выполнялось рабочим, который был вынужден удерживать обрабатывающий инструмент в руке. К сожалению, мировая техническая общественность тогда не узнала об изобретении талантливого русского механика А.К.Нартова - суппорте резцедержателе, которым он еще в 1717 году оснастил построенный им же токарный копировальный станок. В России тех лет данная разработка, как и многие другие изобретения этого талантливого «начальника» придворной токарни и воспитанника царя реформатора Петра I, была не востребована, и на время забыта.

Только ближе к концу столетия конструкция Нартова была изучена и стала отправной точкой для создания управляемого механического суппорта английским механиком и изобретателем Генри Модсли. После этого события устройство почти всех основных видов станков, применявшихся в мануфактурах и на фабриках, подверглось основательной модернизации. До этого токарные работы выполнялись при помощи примитивных держателей резца, что не позволяло обеспечить необходимую точность обработки. С появлением управляемого суппорта данная проблема была окончательно устранена.

«Социальный» заказ и потребность фабрик в новых, воплощенных в металле средствах производства, всячески стимулировали развитие способов металлообработки. Эта востребованность стала реальным катализатором процессов индустриализации, и привела к созданию новой отрасли промышленного производства - машиностроения. Однако, для того чтобы в полной мере удовлетворить технические запросы быстро развивавшегося общества, машиностроению предстояло совершить качественный технологический прорыв.

Важнейшие разработки и изобретения эры индустриального переворота


1.Токарный станок

В Англии революционные преобразования экономики начались с бурного прогресса в текстильной промышленности. Обеспечить эту отрасль новыми, более производительными машинами удалось благодаря не менее быстро развивавшимся технологиям и совершенствованию методов металлообработки. Спрос обеспечил быструю эволюцию средств производства, и, в первую очередь, одного из основных на то время технических средств обработки металлов резанием - токарного станка. На протяжении XVIII - XIX столетий конструкция токарного станка претерпела множественные усовершенствования, среди которых следует особо отметить следующие:

● 1712 г. Изобретение российским механиком Андреем Константиновичем Нартовым самоходного суппорта, обеспечившего возможность фиксированного крепления резца и его точного линейного перемещения вдоль обрабатываемой детали.

●1718 - 1729 г.г. Совершенствование А.К.Нартовым устройства токарного станка - копира, в котором траектория хода привода суппорта и передвижение копировального пальца управлялись различными участками ходового винта с отличающимися параметрами нарезки.

● 1751 г. Первый в мире полностью металлический токарный станок универсального типа от француза Жака де Вокансона. Его отличала тяжелая станина, мощные, изготовленные из металла центры, и V-образные направляющие.

● 1778 г. Новые типы винторезных станков авторства английского механика Д. Рамедона. Для изготовления резьбы с тем или иным шагом, в одном из них применялись сменные шестерни, в другом за движение резца отвечала специальная струна, которая наматывалась на вал определенного диаметра.

● 1795 г. Усовершенствованный французским механиком Сено функционал винторезного станка. Помимо уже применявшихся в станках Рамедона сменных шестерен и большого ходового винта, очевидным отличием данной разработки стал оригинальный конструктив механизированного суппорта.

● 1798 - 1800 г.г. Совершенная модель универсального токарного станка, построенная английским инженером Генри Модсли и его учениками. Данная конструкция стала прообразом токарно-винторезных станков будущего, и во многом определила направление развития данного вида металлообрабатывающего оборудования на сто, и более лет вперед. Кроме того, Г. Модсли первым начал процесс стандартизации резьбовых соединений.

● 1815 - 1826 г.г. Работы учеников и последователей Генри Модсли - Р.Робертса и Д.Клемента. Первому из них удалось улучшить станки за счет оптимального расположения ходового винта, создать элементарный вариатор в виде зубчатого перебора и сделать более удобным управление, вынеся все переключающие органы ближе к рабочему месту токаря. Д.Робертсу историки станкостроения приписывают создание лоботокарного станка, позволившего обрабатывать детали крупных диаметров.

● 1835 г. Важнейшая доработка механизма подачи токарных станков британским инженером-механиком и изобретателем Джозефом Витуортом - еще одним учеником Г.Модсли. Он разработал механизм поперечной передачи и связал его с продольным приводным механизмом.

● 1845 г. Автоматизированный револьверный станок американского инженера С.Фитча, предложившего прототип револьверной головки с восемью закрепленными в ней сменными резцами. Быстрая смена режущих инструментов снизила до минимума потери времени на их переустановку, и резко повысила производительность труда при обработке серийных изделий.

● 1873 г. Создание прообраза металлорежущего токарного станка автомата американским инженером и предпринимателем Х.Спенсером, который усовершенствовал конструкцию разработанных его предшественниками револьверных станков. Важной новацией авторства Х.Спенсера стала модернизированная система управления с использованием кулачкового механизма и распределительного вала.

● 1880 - 1895 г.г. Начало мелкосерийного выпуска токарных систем фирмы «Кливленд» и металлорежущего оборудования других производителей, построенного по принципу многошпиндельного станка автомата. Достигнутое таким образом расширение функциональных возможностей позволило реализовать давнишнюю мечту разработчиков промышленного металлорежущего оборудования - за счет совмещения различных операций многократно повысить производительность и экономическую эффективность работы станочного парка.

2.Фрезерный станок

Обтачивая вращающуюся деталь, невозможно выполнить обработку продольных и наклонных плоских поверхностей, а также устройство всевозможных пазов, канавок, подсечек, сплошных «карманов» и окон. Закрепив неподвижно деталь, и сделав подвижным вращающийся режущий инструмент, человечество открыло для себя фрезерные работы еще в XVII веке, когда китайские мастера изготовили достаточно примитивный станок, тем не менее, позволивший обработать крупную плоскую деталь для астрономического прибора.

Однако обеспечить точную работу механизма подачи вращающейся фрезы, достаточную для выполнения мелких работ по металлу, оказалось значительно сложнее, чем управлять суппортом с неподвижно закрепленным резцом в токарном станке. Разнообразные конструкции для фрезерования плоских поверхностей, разработанные в XVII веке, годились только для обработки изделий из дерева или кости. Многочисленные попытки создать станок для фрезерования металлических деталей успехом в то время не увенчались.

В полной мере решить эту задачу смог американский промышленник и инженер Илай Уитни, который в 1818 году построил полноценный фрезерный станок с механизированным суппортом, длительное время применявшийся на принадлежавшем ему оружейном заводе. Несмотря на наличие деревянной станины, деревянного двухступенчатого шкива и кустарный внешний вид, фрезерный станок конструкции Илая Уитни успешно справился со всеми возложенными на него функциями, и работал практически без поломок.

Заслуживают нашего внимания конструкции специализированных фрезерных станков, разработанных российскими механиками для оружейного завода в Туле. Уже к 1826 году там были сданы в эксплуатацию два станка для подрезки казенных концов ружейных стволов. Закрепленный в специальном подвижном приспособлении, ствол подавался в рабочую зону торцовой фрезы, Конструктивно и по внешнему виду изготовленные тульскими мастерами станки были совершеннее изделий Илая Уитни, и обеспечивали более высокое качество обработки поверхности деталей.

В первой половине XVIII века технический прогресс в области совершенствования конструкций и функциональных возможностей фрезерных станков был связан с потребностями оружейников. Очередной и более совершенный, чем разработки предшественников, прототип фрезерного станка в 1835 году был изготовлен механиками американской оружейной компании «Гай, Сильвестр и Ко». Отличительной особенностью данной конструкции стала уникальная система перемещения фрезы в вертикальной плоскости, которая впоследствии была преобразована в более надежный механизм подъема стола.

В середине XVIIIвека возможности фрезерных станков наконец-то были востребованы «мирными» предприятиями, которые уже вовсю работали на нужды индустриальной революции, и вынуждены были обрабатывать плоские поверхности шлифованием. Первой разработкой гражданского назначения стал станок английской компании «Нэсмит и Гейскелл», который выполнял фрезерование плоских граней гаек. Несмотря на узкую специализацию, это устройство, по сути, являлось универсальным горизонтально-фрезерным станком, и вполне могло применяться на множестве других операций.

Еще более совершенную конструкцию фрезерного станка в 1855 году разработала и воплотила в металле американская компания «Линкольн» (Phoenix Iron Works Джорджа Линкольна). Рабочий стол этого изделия, как и у предшественников, приводился в движение ременной передачей и червячным механизмом, но для продольного перемещения стола здесь был применен ходовой винт с маховиком. Установка фрезы в вертикальной плоскости выполнялась в данной конструкции перемещение подшипников оправки, что также стало определенной технической новацией, обеспечившей удобство и повысившей точность работы. Схема станка стала классической и была заимствована многими производителями фрезерного оборудования.


История создания этого популярного станка и его широкого распространения тесно связана с именами людей, которые впоследствии основали всемирно известную и в наши дни компанию. Фрэнсис Пратт, создатель «Линкольна», работал начальником производства в Phoenix Iron Works вместе с Эмосом Уитни (родственником родоначальника фрезерного оборудования Илая Уитни). Оба были талантливыми механиками и изобретателями и в 1860 году основали Pratt & Whitney Company, специализирующуюся на выпуске металлообрабатывающего оборудования. В годы Гражданской войны в США компания существенно разрослась и станки под этой маркой стали продаваться по всему миру. В настоящее время Pratt & Whitney- крупнейший поставщик газотурбинных двигателей и генераторных установок.

3.Паровой двигатель Уатта - востребованный привод станочного оборудования

Приводимые в действие силой ветра или падающей воды токарные, сверлильные и фрезерные станки не могли в полной мере обеспечить необходимые параметры вращения заготовок или инструментов, что существенно сказывалось на качестве обработки металлов. Чтобы организовать фабричный выпуск новых машин и других средств производства, требовался мощный движитель, который смог бы с необходимой скоростью и силой приводить в действие механизмы станочного оборудования. Таким двигателем стала созданная шотландским инженером, механиком и изобретателем Джеймсом Уаттом универсальная паровая машина.

Оригинальную конструкцию «парового насоса» в 1698 году разработал и изготовил Томас Сэвери, который в том же году запатентовал свое изобретение и применил его для откачивания шахтных вод. По причине низкой производительности и большого расхода топлива использовать этот двигатель в качестве привода агрегатов станочного оборудования было невозможно. Данную конструкцию, начиная с 1705 года, пытался улучшить другой англичанин - Томас Ньюкомен. Он довел построенный на ее основе водоподъемный насос до мелкосерийного производства, однако из-за недостаточной мощности для применения в промышленности этот двигатель также не подходил.

Свой вариант парового двигателя научный консультант университета в Глазго Джеймс Уатт разработал в 1764 году. Но только спустя 12 лет, когда его партнером стал состоятельный промышленник Мэтью Болтон, изобретателю удалось организовать производство и коммерческую продажу изготовленных паровых машин. Именно Уатт сумел преобразовать поступательное движение поршней своих машин во вращение нагрузочного выходного вала. Начальная конструкция потом многократно дорабатывалась и становилась все более мощной и экономичной. Но главное было сделано - в конце XVIII века металлорежущие станки получили такой необходимый, и не зависящий от природных явлений, автономный привод.

Дальнейшее развитие металлообрабатывающих станков


Индустриальная революция обусловила необходимость в разработке и выпуске машин практически для всех отраслей промышленного производства. От уровня развития средств металлообработки зависело состояние экономики, поэтому техническая база станкостроения непрерывно совершенствовалась. Конструкция механического суппорта, первично разработанная для крепления и управляемого перемещения резцов токарного станка, была с успехом применена в других видах станочного оборудования.

Для создания новых металлообрабатывающих устройств применялся не только механический суппорт, но и другие конструктивные узлы токарного станка - система зубчатой передачи, механизм подачи, зажимные устройства и элементы кинематики. Многочисленные американские машиностроительные заводы, которые к середине XIX века в техническом развитии обогнали родоначальников станкостроения - англичан, массово выпускали шлифовальные, расточные, токарно-револьверные, универсально-фрезерные и карусельные станки, ставшие со временем основой промышленного расцвета и мощи США.

В 60-е годы XIX века машиностроение начало стремительно развиваться в Германии и России. В нашей стране одним из пионеров станкостроения стал Тульский оружейный завод, который для собственных нужд начал выпуск токарных, фрезерных, сверлильных, резьбонарезных, шлифовальных, протяжных и шлифовальных станков. Успешно начали работу машиностроительные предприятия, построенные в Москве, Ижевске, Сестрорецке, Воронеже и Санкт-Петербурге. Первым специализированным предприятием станкостроения стал московский завод братьев Бромлей, позднее переименованный в «Красный Пролетарий».

Российские заводы быстро освоили производство всего необходимого ассортимента станочного оборудования, включая оригинальные собственные разработки продольно-строгальных и колесотокарных станков. Несмотря на эти очевидные успехи, общий уровень российского станкостроения тех лет существенно отставал от количественных и качественных показателей машиностроительных отраслей Англии, США и Германии, поэтому основная масса станочного оборудования для заводов и фабрик России приобреталась их владельцами за рубежом. Типовым оснащением металлообрабатывающих предприятий того времени были станки шести видов:

Токарные , на которых обтачивали наружные и внутренние поверхности тел вращения, выполнялась обработка гладких и ступенчатых валов, изделий в форме шара или конуса, растачивались цилиндрические детали и нарезалась резьба.

Фрезерные станки , позволявшие обрабатывать внешние и внутренние поверхности заготовок деталей сложной формы, к которым предъявлялись повышенные требования по точности и качеству.

Строгальные станки горизонтального и вертикального типа, предназначенные для обработки заготовок и изделий с плоскими поверхностями.

Сверлильные станки , при помощи которых высверливались, растачивались и обрабатывались отверстия, а также могли нарезаться резьбы.

Шлифовальные машины, на которых производилась чистовая обработка изделий специальным абразивным инструментом и материалами.

● Станки специального назначения , разработанные и изготовленные для выполнения ограниченного количества или одной конкретной операции технологического процесса.

В конце XIX века металлообрабатывающее оборудование всех основных групп дифференцировалось, и выпускалось в виде универсальных станков, либо машин специального назначения. Действительно, зачем тратиться на сложный и дорогой станок, если он будет использоваться для выполнения всего нескольких однотипных операций. К примеру, так появилось специальное расточное оборудование, применявшееся для изготовления стволов орудий и обработки любых других изделий цилиндрической формы и большой длины.

При попытке приспособить токарный станок к работе с заготовками малой длины и значительных диаметров была разработана конструкция лоботокарного станка. Подобным образом, под конкретную задачу, появились токарно-карусельные станки для обработки заготовок большого веса и размера, с которыми не могло работать оборудование стандартного исполнения. Для обработки крупногабаритных изделий были разработаны конструкции радиально-сверлильных и продольно-строгальных станков с длинными подвижными столами.

Наивысшим достижением станкостроительной отрасли конца XIX века стали станки токарно-револьверного типа, оборудованные головками для одномоментной установки до 16 инструментов, а также карусельно-фрезерное оборудование, позволявшее вести обработку сразу нескольких изделий крупного веса и размеров. Не менее востребованными стали все специализированные машины, предназначенные для нарезки зубьев и обработки зубчатых колес - станки зубофрезерного, зубодолбежного и зубострогального типа.

На рубеже XX века конструкторы и инженеры механики считали, что дальнейшее развитие станочного оборудования для металлообработки должно быть связано с автоматизацией, дальнейшим повышением точности и скорости выполнения операций. Огромное значение для будущего отрасли имело изобретение американскими инженерами Уайтом и Тэйлором высоколегированной «быстрорежущей» стали для изготовления резцов и других металлорежущих инструментов. Однако открывшимися в связи с этим изобретением возможностями обработки металлов на повышенных скоростях станкостроители смогли в полной мере воспользоваться уже в XX веке.

Избранные персоны промышленной революции

Основой любых прогрессивных изменений в жизни общества, будь то социальные, экономические или технологические преобразования, являются конкретные личности. Кроме потребностей общества в совершенствовании технического базиса производства, необходимым условием индустриальной революции стала созидательная деятельность множества талантливых людей - станочников, механиков, изобретателей и инженеров конструкторов.

Именно они, дополняя и совершенствуя разработки друг друга, создали в итоге станочный парк, который позволил наладить производство необходимого количества новых и более совершенных средств производства. Для примера перечислим хотя бы нескольких «действующих лиц» индустриальной революции, не забыв и о наших великих соотечественниках, также внесших свой весомый вклад в практику и теорию металлообработки:

● А.К.Нартов - выходец из народа, начавший карьеру токарем дворцовой мастерской Петра I, и закончивший свой земной путь в генеральском чине статского советника. После обучения за границей, молодой заведующий придворной «токарней» Андрей Нартов еще в 1717 году предложил конструкцию механизированного суппорта токарного станка. Впоследствии А.К.Нартов детально разработал механизмы еще 34 станков, но после его смерти рукописи попали в придворную библиотеку, и были найдены потомками только через 200 лет.

● Генри Модсли - английский механик, который увековечил свое имя созданием в 1794 году совершенной конструкции крестового механического самоходного суппорта. Он же в 1798 году при разработке токарно-винторезного станка применил сменный ходовой винт, и впервые предложил стандартизовать все резьбовые детали и соединения. Кроме того, Генри Модсли известен тем, что обучил и воспитал на собственном заводе целую плеяду учеников, каждый из которых продолжил дело учителя и внес собственный вклад в дальнейшее развитие средств металлообработки.

Джозеф Витуорт . Этот британский инженер и предприниматель вошел в историю не только усовершенствованием конструкции поперечной передачи токарного станка. Впоследствии Д,Витуорт стал промышленником, построил собственный механический завод, а главное - еще в 1841 году предложил принципы унификации деталей машин и стандарты винтовой резьбы, которые носят его имя и применяются поныне. Он же является автором системы калибров, которую разработал и вместе с особо точными измерительными приборами ввел в практику работы своего завода, показав тем самым пример станочникам всего мира.

● И.А.Тиме - российский ученый и инженер механик, впервые изучивший и осветивший в своих трудах процессы, которые происходят при механической обработке металла. Изучая параметры образования стружки при различных скоростях подачи и резания, он смог установить важные закономерности, позволившие ему в 1870 году опубликовать рекомендации по настройке оптимальных режимов работы металлорежущих станков.

● К.А.Зворыкин - выпускник Санкт-Петербургского механического технологического института, впоследствии профессор. Константин Алексеевич Зворыкин продолжил изыскания И.А.Тиме и опубликовал труды, посвященные проблемам оптимального резания металлов, в которых привел уточненную схему усилий, воздействующих на резец. В 1883 году К.А.Зворыкин создал прибор, позволявший определить силу резания, и вывел формулу, по которой можно было рассчитать наиболее эффективные режимы работы станка.

Фредерик Тэйлор - американский инженер, в течение 26 лет изучавший процессы резания металлов резцами различной формы, под различными углами и на всех возможных скоростных режимах. Он выявил закономерности, влияющие на качество обработки, затраты времени, толщину стружки, параметры охлаждения и стойкости резцов. В результате он практическим путем установил самые выгодные режимы металлообработки, и в 1884 году создал на основе своих исследований специальную счетную линейку рабочего - станочника, по которой можно было определить оптимальный режим резания. Работы Ф.Тейлора имели неоценимое значение для совершенствования способов металлообработки, и с благодарностью были приняты профильными специалистами всего мира.

Российское станкостроение на пороге XX века

Индустриальная революция в России, с ее преимущественно аграрным укладом экономики, запоздала почти на столетие. Однако, начавшись в середине XIX столетия, за достаточно короткий по историческим меркам период в 50 лет промышленная революция подвергла всю производственную и социально-экономическую сферу российского государства необратимой реформации. После отмены крепостного права в стране окончательно утвердился капитализм и присущие ему рыночные отношения, быстро шли процессы накопления капитала и создания промышленных предприятий. Как сто лет назад в Англии, внедрение высокопроизводительных машин началось на фабриках хлопчатобумажной промышленности.

По данным статистики, к началу 1900 года в России начитывалось 1805 предприятий машиностроения и металлообработки, оснащенных 2966 механическими двигателями. Общее количество и видовое разнообразие металлорежущих станков история, к сожалению, не сохранила. В то же время на 185 ткацких фабриках применялось более 150 тысяч механических ткацких станков, многие из которых были изготовлены на отечественных машиностроительных предприятиях. Российское станкостроение, хотя значительно отставало от уровня ведущих стран мира, развивалось поистине семимильными шагами. К концу XIX века по уровню оснащенности промышленных предприятий металлообрабатывающими станками Россия вышла на среднемировые показатели.

© 2024 sistemalaki.ru
Бизнес-идеи. Бизнес-планы. Франшизы. База знаний. Документы